The Passover locus in Drosophila melanogaster: complex complementation and different effects on the giant fiber neural pathway.

نویسندگان

  • D H Baird
  • A P Schalet
  • R J Wyman
چکیده

Drosophila melanogaster bearing the Passover mutation fail to jump in response to a light-off stimulus. Pas also disrupts some of the synapses between the neurons of the giant fiber system which mediate this escape behavior. We have mapped Pas to the 19E subdivision of the polytene X chromosome. Our genetic analyses reveal that deletions of either of two nonoverlapping regions fail to fully complement Pas. Heterozygotes of Pas with chromosomal deletions in the vicinity of polytene band 19E3 exhibit the full set of neuronal defects shown by Pas homozygotes. Alleles of the R-9-29 complementation group, which maps to band 19E3, exhibit a complex pattern of complementation with Pas. Heterozygotes combining the lethal R-9-29 alleles with Pas are all viable, some complement the neuronal defects of Pas, but most exhibit these defects. The viable shaking-B2 mutation also fails to complement Pas, the R-9-29 alleles or the 19E3 deficiencies. The R-9-29 locus may contain two functional domains, one required for viability the other for normal neuronal phenotype, trans-Heterozygotes bearing mutant alleles or a deficiency of the first region (19E3) together with deficiencies of the second region (19E5-6) also exhibit some of the neuronal defects shown by the Passover mutant. Deficiencies which delete the entire 19E3 to 19E6 interval do not produce this phenotype when heterozygous with a normal X chromosome. Thus normal function requires a cis-interaction between the two regions. These findings raise the possibility that the gene mutated by Pas is split or separated from a cis-activator by at least one other gene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of intracistronic complementation in the Passover locus of Drosophila.

The only demonstrated mechanism for intracistronic genetic complementation requires physical interaction of protein subunits to create a functional molecule. We demonstrate another and perhaps quite general mechanism utilizing proteins with unique and shared domains. The Drosophila neural mutant Passover (Pas) disrupts specific synaptic connections. Alleles of a lethal complementation group exh...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)

Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...

متن کامل

A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophila.

The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decreme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 126 4  شماره 

صفحات  -

تاریخ انتشار 1990